1 (vii) maths Multiple Choice Questions (MCQs) CLASS: VII SUBJECT: MATHS

Chapter - 1

Question 1)	To distinguish from negati	ive numbers, the natural n	umbers are called.	
	(a) negative numbers	(b) positive integers	(c) rational numbers	(d) Natural numbers
Question 2)	The additive inverse of an	integer 'a' is the integer		
	(a) 1	(b) 0	(c) a	(d) – a
Question 3)	Multiplication distributes	over addition and subtract	ion.	
	(a) Distributive Property	(b) Identity property	(c) Closure property	(d) Associative property
Question 4)	The of a numb	er is the distance between	0 and the number on the	number line
	(a) Integer	(b) absolute value	(c) closure property	(d) Identity property
Question 5)	You write an essay for you	ur final exam worth 40 mar	ks. The teacher deducts 12	2 points for incorrect
	grammar and gave 7 bonu	is points for creativity. Wh	ich expression does not re	present your final score?
	(a) 40 – 12 + 7	(b) 40+(-12)+7	(c) 40 + -12 + 7	(d) 40 12 + 7
Ouestion 6)	Preeti had mixed fruit juic	e in a jar that had a tempe	rature of 10°C. She poured	l it into 6 glasses and froze
,	the juice to -2°C. What is t	the change in temperature	of the juice?	j
	(a) -4 ^o C	(b) -12 ⁰ C	(c) 4 ⁰ C	(d) 12 ⁰ C
Ouestion 7)	Which of the following pro	oducts is different?		
	(a) (-8)×2×5×(-4)	(b) (-8)×(-2)×(-5)×4	(c) 8×(-2)×5×(-4)	(d) 8×(-2) ×(-5)× 4
Question 8)	Every week your earn Rs.1	100, but every other week	you spend Rs.25. What is t	he total amount of money
,	You have after 8 weeks?	. , .		5
	(a) Rs.300	(b) Rs.600	(c) Rs.550	(d) Rs.700
Question 9)	The value of 6÷(-1) does n	ot lie between		
	(a) 0 and -10	(b) -3 and -12	(c) -4 and 10	(d) -7 and 7
Question 10)	Which of the following is i	ncorrect?		
	(a) 24÷(-6)>(-25)÷5	(b) 0÷(-8)+11=0÷(100)+11	(c) 8÷(-4)-1>8÷4-1 (d) (-100)÷25÷(-1)=100÷(-25)÷(-1)
Question 11)	Which of the following on	simplification is negative?		
	(a) -10-(-6)+4	(b) [3+(-15)]÷4	(c) -16÷[4×(-2)]	(d) (2-8)÷(-2)×3
Question 12)	The next number in the pa	attern -48, -33, -18	is	
	(a) 15	(b) 3	(c) -3	(d) 0
Question 13)	-48×116 is not the same a	S		
	(a) -48×(100+16)	(b) (-48)×100+(-48)×16	(c) (-40-8)×116	(d) -48×16+100
Question 14)	Which of the following is t	the odd one out?		
	(a) 40+(-45)	(b) (-57)-(-52)	(c) (-5)×(-1)	(d) 80÷(-16)
Question 15)	The product of the two in	tegers with the same sign i	S	
	(a) positive	(b) negative	(c) none of these	(d) 1
Question 16)	Integers are closed under	addition and subtraction a	s the sum and difference c	of integers is an integer
0 11 17)	(a) Identity property	(b) Closure Property	(c) Additive Inverse	(d) None of these
Question 1/)	The value of $(-4) \times (-2) \times 8$	is «Nac		
0 11 10	(a) 64	(b) 20	(C) – 64	(d) None of these
Question 18)	Ine temperature drops 2°	$^{\prime}$ C every nour for 6 nours. V	vnat is the change in temp	
$O_{\rm resting}$ 10)	(a) -12°		(C) 12°C	(d) None of these
Question 19)	If $36 \div a = -9$ then the value (a) 4		(a) 0	
Question 20)	(d) 4 By how much doos 2 over	(D) -4	(L) U	(u) 2
Question 20)	by now much does 2 exce	eu – 5 ? (b) 1	(c) 5	(d) 5
Outstion 21	(d) - 1 On subtracting 13 from	(u) 8 wo got	(0)-5	(d) 5
	(a) -21	(h) 21	(c) 5	(d) -5
Ouestion 22	Which of the following sta	tement is true?	(0) 0	(u) -5
	(a) $-11 > -8$	(h) = 11 < -8	(c) = 11 and -8 cannot co	mpared (d) None of these
Ouestion 23)	The additive inverse of -6	bis		
200000000000000000000000000000000000000	$(a)^{\frac{1}{2}}$	$(h)^{-1}$	(c) 6	(d) 5
Ourseties 24	$\left(\begin{array}{c} \left(\begin{array}{c} \alpha \right) \\ \alpha \end{array} \right) \left(\begin{array}{c} \alpha \end{array} \right)$			(u) J
Question 24)	$(-3/) \times (-/) + (-3/) \times (-3) =$	((b) 270	(a) 140	(-) 140
Question 25)	(d) 3/U (2) (10) E	(0) - 370	(C) 148	(u) – 148
Question 25)	$(:) \div (-10) = -0$	(b) 00	(c) 0	(d) Nono of these
	(a) – 70	(u) 30		

<u> Chapter - 2</u>

Question 1)	Find the missing numerate	or, if $2\frac{x}{6} + 4\frac{5}{12} = 6\frac{7}{12}$		
	(a) 5	(b) 2	(c) 1	(d) 4
Question 2)	Mohit needs to work 45 hours per week. He has worked $38\frac{7}{9}$ hours so far this week. How many hours does			
	He need to work on Friday to meet the 45 hours requirement?			
	(a) 7 hours	(b) $6\frac{2}{9}$ hours	(c) $6\frac{1}{9}$ hours	(d) $6\frac{7}{9}$ hours
Question 3)	The product of two mixed	l numbers is always.	,	,
	(a) less than 1	(b) equal to 1	(c) greater than 1	(d) None of these

		2 (vii) maths	5	
Question 4)	Rita packed 6kg of shelled	peas into- freezer bags. If	each bag weights $\frac{3}{4}$ kg, how	w many freezer bags
	(a) $4^{\frac{1}{2}}$	(b) 8	(c) 12	(d) $7\frac{1}{2}$
Ouestion 5)	A fraction whose numerat	for and denominator are ei	ither or both fractions is ca	lled a
	(a) Reciprocal	(b) Complex	(c) Division	(d) None
Question 6)	Fractions having the same	denominator but differen	t numerators are called	
	(a) Like fraction	(b) Unlike fraction	(c) Simple fraction	(d) Mixed fraction
Question 7)	Decimals having different	number of decimal places	are called	
	(a) Like decimals	(b) Unlike decimals	(c) None of these	(d) Only decimals
Question 8)	$\left[3\frac{1}{4} \div \left\{ 1\frac{1}{4} - \frac{1}{2} \left(2\frac{1}{2} - \frac{1}{4} - \frac{1}{4} \right) \right] \right]$	$\left[\frac{\overline{1}}{6}\right] \left[\div \left(\frac{1}{2} of 4 \frac{1}{3}\right) \right] equals.$		
	(a) 18	(b) 36	(c) 39	(d) 78
Question 9)	If 213 × 16 = 3408 then 1.0	6 × 2.13 equals	/ N =	
0	(a) 0.3408	(b) 34.08	(c) 3.408	(d) 340.8
Question 10)	$0.05 \times 5 - 0.005 \times 5$ equals	S (b) 0 225	(c) 0 0225	(d) 0.275
Question 11)	What is the value of the e	(0) 0.223 xpression on 2.5 + 3.8 ÷ 0.0	(c) 0.0223]2 ?	(0) 0.275
	(a) 192.5	(b) 315	(c) 6.32	(d) 128.8
Question 12)	Lata earns Rs. 125.84 an h	our. If she earned Rs.4530	.24 last week, how many h	ours did she work?
	(a) 36 hours	(b) 45 hours	(c) 20 hours	(d) 40 hours
Question 13)	Quotient 0.625 is called a			<u> </u>
Outpation 14)	(a) Non terminating decim	al (b) terminating o	lecimal (c) None of these	e (d) repeating decimal
Question 14)	Reciprocal of any fraction			
	(a) $\frac{b}{a}$	(b) $\frac{a}{b}$	(c) None	(d) 0
Question 15)	When 0.232323 is	converted into a fraction,	then the result is	22
	(a) $\frac{1}{5}$	(b) $\frac{2}{9}$	(C) $\frac{23}{99}$	(d) $\frac{23}{100}$
Question 16)	Which of those is equal to	3.14×10 ⁶ ?		
Outpation 17)	(a) 314 A mothe book is 2.75 cm t	(b) 3140 high What is the total this	(C) 3140000	(d) None of these
Question 17)	A matrix book is 3.75 cm (a) 25.75 cm	(h) 0 2875 m	(c) 93 75 m	(d) 0 9375 m
Ouestion 18	$\frac{0.23 - 0.023}{0.000}$ equals	(0) 0.2070 111		
	$_{0.0023 \div 23}^{0.0023 \div 23}$	(h) 207	(c) 2070	$(d) \cap O 2 0 7$
Ouestion 19)	By which decimal number	should 0.0001 be divided	to get 0.01?	(0) 0.0207
,	(a) 0.1	(b) 0.01	(c) 0.001	(d) none of these
Question 20)	When $0.\overline{47}$ is converted in	nto a fraction, then the res	sult is	
	(a) $\frac{46}{12}$	(b) $\frac{46}{3}$	(c) $\frac{47}{11}$	(d) $\frac{47}{-}$
Ouestion 21	The value of $\frac{3.6 \times 0.48 \times 2.50}{3.6 \times 0.48 \times 2.50}$	is	\$ 90	× 7 99
	(a) 80 $0.12 \times 0.09 \times 0.5$	(h) 800	(c) 8000	(d) 80000
Ouestion 22)	$1.1 \times 0.1 \times 0.01 = ?$			(4) 00000
,	(a) 0.11	(b) 0.011	(c) 0.0011	(d) none of these
Question 23)	4.669 ÷ 2.3 = ?	. ,		
	(a) 2.3	(b) 2.03	(c) 2.003	(d) none of these
Outstion 24	Which one of the followin	a is correct statement?		
Question 24)	$(a) \stackrel{2}{=} \stackrel{3}{=} \stackrel{14}{=} 14$	(b) $\frac{3}{2}$, $\frac{2}{14}$	(a) 14 3 2	(d) none of these
	(a) - < - < - < - < - < - < - < - < - < -	(D) $\frac{-}{5} < \frac{-}{3} < \frac{-}{15}$	$(C) \frac{-}{15} < \frac{-}{5} < \frac{-}{3}$	(d) none of these
Question 25)	$36 \div \frac{1}{4} = ?$			
	(a) 9	(b) $\frac{1}{9}$	(C) $\frac{1}{144}$	(d) 144
		<u>Chapter – 3</u>		
Question 1)	A number that can be write	tten as $\frac{a}{b}$, where 'a' and 'b	o' are integers and $b = \neq 0$ is	scalled
	(a) Natural number	(h) Whole number	(c) Dational number	(d) None of these

,		b '	5	
	(a) Natural number	(b) Whole number	(c) Rational number	(d) None of these
Question 2)	A rational number is its p	ositive numerical value is o	called.	
	(a) Positive value	(b) Negative value	(c) Absolute value	(d) None of these
Question 3)	A rational number is said	to be in form w	hen it is in its simplest form	and its denominator is positive.
	(a) Standard	(b) Rational	(c) None of these	(d) Lowest
Question 4)	Write in order from least	to greatest (ascending or	ler) $\frac{-5}{6}$, $\frac{7}{-18}$, $\frac{-19}{24}$, $\frac{37}{-72}$	the correct form is –
	(a) $\frac{7}{-18}$, $\frac{-5}{6}$, $\frac{-19}{24}$, $\frac{37}{-72}$	(b) $\frac{-5}{6}$, $\frac{-19}{24}$, $\frac{-37}{72}$, $\frac{-7}{18}$	$(C)\frac{-19}{24}, \frac{7}{-18}, \frac{37}{72}, \frac{-5}{6}$	(d) $\frac{-7}{18}$, $\frac{-19}{24}$, $\frac{-5}{6}$, $\frac{-37}{72}$
Question 5)	Add $\left(-1\frac{5}{12}\right)+2\frac{1}{16}$			
	(a) $\frac{31}{48}$	(b) $\frac{14}{48}$	(c) $\frac{-31}{48}$	(d) $\frac{-15}{48}$
Question 6)	Two rational numbers, ca	in be compared by finding	their.	
	(a) Difference method	(b) product method	(c) cross product	(d) none of these

Question 7)	If $\frac{a}{b}$ and $\frac{c}{d}$ are two rational (a) $\frac{a}{b} - \frac{c}{d} = \frac{a}{b} + \left(\frac{-c}{d}\right)$	3 (vii) maths al numbers (b and d \neq 0) th (b) $\frac{b}{a} - \frac{d}{c} = \frac{b}{a} + 0$	en (<u>d</u> _c)	
Question 8)	(c) $\frac{a}{b} + \frac{c}{d} = \frac{a}{b} + \frac{d}{c}$ Which set of numbers is in (a) 0.3, $\frac{-1}{4}$, $\frac{-4}{5}$, 0	(d) $\frac{b}{a} + \frac{c}{d} = \frac{a}{b} + \frac{c}{a}$ n order from greatest to leas (b) $\frac{-1}{4}$, $\frac{-4}{5}$, 0, 0.3	$\left(\frac{-d}{c}\right)$ ast ?	
Question 9)	(c) 0.3, 0, $\frac{-4}{5}$, $\frac{-1}{4}$ The product of two number	(d) 0.3, 0, $\frac{-1}{4}$, $\frac{-4}{5}$ ers is $-24\frac{1}{2}$. If one of the r	numbers is $5\frac{1}{4}$, then the ot	her number is :
Oursetier 10)	(a) $5\frac{1}{6}$	(b) $-4\frac{2}{3}$	(c) $-5\frac{1}{6}$	(d) $4\frac{2}{3}$
Question TO)	$(a)^{\frac{5}{2}}$	(b) $\frac{-3}{-3}$	(c) $\frac{3}{2}$	(d) Not define
Question 11)	Solve the equation : $\mathbf{I} \times \mathbf{I}$	$= 21 \div 3\frac{1}{28}$ then	28	
·	(a) 6	(b) 7	(c) – 6, 6	(d) – 6
Question 12)	Solve $\frac{-8}{-13} + \frac{-9}{26} + \frac{30}{-39} + 1$ (a) $1\frac{41}{78}$	the answer is : (b) $\frac{57}{78}$	(c) $\frac{1}{2}$	(d) 0
Question 13)	If $3\frac{1}{6} + x = \frac{19}{42}$, the value	of \times is (b) $= 2^{\frac{5}{2}}$	$(c) = 3^{\frac{13}{13}}$	(d) $-2\frac{3}{3}$
Question 14)	A pile of paper is $10 \frac{1}{2}$ cm (a) 100	high and each sheet is $\frac{7}{100}$ (b) 1000	cm thick. Find the number (c) 700	r of sheets in the pile (d) 150
Question 15)	The reciprocal of $2^{\frac{1}{2}}$ -	$3\frac{5}{2}$ is		
,	(a) $1\frac{1}{4}$	(b) $\frac{-4}{5}$	(c) $\frac{4}{5}$	(d) none of these
Question 16)	By what number should w (a) $\frac{-8}{9}$	ve multiply - 4 $\frac{9}{14}$ so that t (b) $\frac{4}{9}$	he product is $4 \frac{8}{63}$? (c) $\frac{7}{9}$	(d) ⁸ / ₉
Question 17)	Evaluate $\frac{3\frac{3}{4}}{4}$ for x = 8 $\frac{3}{4}$			
	(a) $2\frac{1}{2}$	(b) $\frac{3}{7}$	(c) $\frac{-3}{7}$	(d) $\frac{5}{7}$
Question 18)	What must be added to -	$\frac{5}{9}$ to make it equal to $\frac{2}{3}$ +	$\frac{2}{5}$?	
	(a) $\frac{23}{45}$	(b) $1 \frac{28}{45}$	(c) $\frac{1}{45}$	(d) $\frac{-23}{45}$
Question 19)	To divide by any non zero (a) reciprocal Solve $- 1.25 \times -0.44 \times \frac{10}{10}$	(b) whole number (b) whole number - the value is	(c) Itself	(d) None of these
,	(a) $\frac{-1}{2}$	(b) $\frac{1}{2}$	(c) 0	(d) 1
Question 21)	The reciprocal of a rationa	al number is also called its (b) Multiplicative	inverse (c) None of these	(d) both (a) and (b)
Question 22)	The number terminates i.e	e which comes to an end is	called	
Question 23)	(a) non terminating All decimals are i (a) Repeating	(b) terminating rational numbers (b) On reccuring	(c) both (a) and (b) (c) terminating	(d) None of these
Question 24)	The absolute value of $ 7$	is	/ .	
Question 25)	(a) – 7 The reciprocal of - 23 is	(b) 7	(c) None	(d) 0
	(a) 23	(b) $\frac{1}{-23}$	(c) 1	(d) None of these
		<u> Chapter – 4</u>		
Question 1)	A negative rational number	er raised to an even power	is (-) ^{even}	
Question 2)	(a) positive The value of (- 1) ¹⁰¹ is	(b) negative	(c) 0	(d) None of these
Ouestion 3	(a) 1 Find the value of $\frac{81}{1000}$ in r	(b) -1	(c) 0	(d) None of these
	$(a) \left(\begin{array}{c} 3 \\ 3 \end{array} \right) 4$	(b) $\begin{pmatrix} 9 \\ 4 \end{pmatrix}$	(c) both (c) \circ (b)	(d) None of these
Question 4)	(a) $(-\frac{1}{5})$ If $a^m \times a^n = ?$ (a) (a) ^{mn}	(b) (a) ^{m-n}	(c) uoun (a) & (b)	(d) a
Question 5)	Determine 'a' so that $\left(\frac{2}{2}\right)$	$)^3 \times \left(\frac{2}{\pi}\right)^{a+5} = \left(\frac{2}{\pi}\right)^{a+5}$	18	
-	(a) 10	(b) 2	(c) 4	(d) 0

	((1 01)1 0	4 (vii) maths	5	
Question 6)	$ (6^{-1} - 8^{-1})^{-1} = ? $ (a) $\frac{-1}{2}$	(b) - 2	(C) $\frac{1}{24}$	(d) 24
Question 7)	$(5^{-1} \times 3^{-1})^{-1} = ?$ (a) $\frac{1}{-1}$	(b) $\frac{-1}{-1}$	(c) 15	(d) – 15
Question 8)	$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2} + \left(\frac{1}{4}\right)$	$)^{-2} = ?$.,	.,
	(a) $\frac{61}{144}$	(b) 29	(C) $\frac{144}{61}$	(d) none of these
Question 9)	$\left(6^{-1} + \left(\frac{3}{2}\right)^{-1}\right)^{-1} = ?$ (a) $\frac{2}{3}$	(b) $\frac{5}{6}$	(c) $\frac{6}{5}$	(d) none of these
Question 10)	$\left(\frac{-1}{2}\right)^6 = ?$		1	_1
Question 11)	(a) - 64 Evaluate x ² – 100 (x-1) ² , if	(b) 64 x = 2.2	(c) $\frac{1}{64}$	(d) $\frac{-1}{64}$
	(a) 0.84	(b) -139.16	(c) 436.16	(d) 84
Question 12)	Find $\left(\frac{a}{b}\right)^{-3}$ if $\frac{a}{b} = \left(\frac{2}{3}\right)^{-3}$	$\int_{-2}^{-2} \frac{1}{2} \left[\left(\frac{-2}{3} \right)^{6} \right]^{0}$	(-) ³	(J) 243
Question 13)	Find 'x' so that	(D) ${729}$	$(C) - \frac{1}{2}$	$(0){32}$
	$\begin{bmatrix} \{ \left(\frac{4}{57} \right)^8 \}^3 \end{bmatrix}^{-2} = \left(\frac{4}{57} \right)^{-2} = \left(\frac{5}{57} \right)^{-2} = \left(\frac{5}{57} \right)^{-2} = \left(\frac{5}{$	(b) -3	(c) 9	(d) -9
Question 14)	$(3^2 - 2^2) \times \left(\frac{2}{3}\right)^{-5} = ?$ (a) $\frac{45}{8}$	(b) $\frac{8}{45}$	(C) $\frac{8}{135}$	(d) $\frac{135}{8}$
Question 15)	$\left[\left(\frac{1}{3}\right)^{-3}, \left(\frac{1}{2}\right)^{-3}\right];$	$\left(\frac{1}{4}\right)^{-3} = ?$		
	(a) $\frac{19}{64}$	(b) $\frac{64}{19}$	(c) $\frac{27}{16}$	(d) none of these
Question 16)	$\left(\frac{-9}{11}\right)^0$ is equal to (a) 0	(b) 1	(c) 2	(d) 3
Question 17)	If $x = \left(\frac{5}{8}\right)^{-2} \times \left(\frac{12}{15}\right)^{-2}$, then the value of x ⁻³ is		
	(a) $\frac{1}{8}$	(b) 64	(c) 8	(d) $\frac{1}{64}$
Question 18)	$\left(\frac{2}{3}\right)^{3} = ?$ (a) $\frac{32}{243}$	(b) $\frac{243}{32}$	(c) $\frac{-32}{243}$	(d) $\frac{-243}{32}$
Question 19)	$\left\{\left(\frac{1}{3}\right)^2\right\}^4 = ?$			
	(a) $\left(\frac{1}{3}\right)^6$	(b) $\left(\frac{1}{3}\right)^8$	(c) $\left(\frac{1}{3}\right)^{16}$	(d) $\left(\frac{1}{3}\right)^{24}$
Question 20)	$\left(\frac{-2}{5}\right)^{/} \div \left(\frac{-2}{5}\right)^{/} = ?$	4	(,) 12	25
Question 21)	(a) $\frac{4}{25}$ $\left(\frac{5}{3}\right)^{-5} \times \left(\frac{5}{3}\right)^{11} = \left(\frac{5}{3}\right)^{11}$	(b) $\frac{-4}{25}$) ^{8x} the x = ?	(c) $\left(\frac{-2}{5}\right)^{1/2}$	(d) $\frac{25}{4}$
	(a) $\frac{-1}{2}$	(b) $\frac{-3}{4}$	(C) $\frac{3}{4}$	(d) $\frac{4}{3}$
Question 22)	Solve for x : (2 ^x) ⁶ = [(2) ⁹] (a) 9	(b) -9	(c) -6	(d) 3
Question 23)	$ \text{If} \left(\frac{8}{3}\right)^{-5} \times \left(\frac{16}{21}\right)^{5} = \left(\begin{array}{c} \\ (a) \ 125 \end{array}\right)^{-5} = \left(\begin{array}{c} \\ (b) \$	$\frac{2}{7}$) ^x then x ³ is (b) -125	(c) -1	(d) -15
Question 24)	By what number should (-	8) ⁻¹ be multiplied to get 10	r^{1} ?	(d) none of these
Question 25)	Which of the following nu (a) 21.56×10^5	mbers is in standard form? (b) 215.6×10 ⁴	(c) 2.156×10 ⁶	(d) none of these

5 (vii) maths <u>Chapter – 5</u>

Question 1)	When a number is multip	lied by itself the product so	obtained is called	
	(a) cube	(b) square	(c) square root	(d) cube root
Question 2)	A natural number which is	s square of another natural	I number is called.	
	(a) perfect square	(b) perfect cube	(c) None of these	(d) both (a) and (b)
Question 3)	The $$ (symbol) repres	sent		() - · · · ·
	(a) cube	(b) fourth root	(c) square root	(d) All these
Question 4)	The cube of a number is t	nat number raised to the p	ower	
Ouaction E)	(a) Z	(D) 4 Imborgic pot a porfact cau	(C) 3	(d) U
Question 5)	(a) 7056	(h) 2060	are: (c) 5478	(d) 1621
Ouestion 6	(a) 7000 Which of the following nu	(D) 3707 Imber is not a perfect squar	(C) 5476	(u) 4024
Question by	(a) 1843	(b) 3721	(c) 1024	(d) 1296
Question 7)	Which of the following ca	nnot be the unit digit of a r	perfect square number?	(0) 1270
,	(a) 6	(b) 1	(c) 9	(d) 8
Question 8)	What least number must	be subtracted from 176 to	make it a perfect square?	
	(a) 16	(b) 10	(c) 7	(d) 4
Question 9)	What least number must	be added to 526 to make it	a perfect square?	
	(a) 3	(b) 2	(c) 1	(d) 6
Question 10)	$\sqrt{0.9} = ?$			
	(a) 0.3	(b) 0.03	(c) 0.33	(d) 0.94
Question 11)	$\sqrt{0.9} \times \sqrt{1.6} = ?$			
	(a) 0.12	(b) 1.2	(c) 0.75	(d) 12
Question 12)	$\frac{\sqrt{288}}{2} = ?$			
,	√128			
	(a) $\sqrt{3}$	$(b)^{3}$	$(a)^3$	(d) 1 40
	(a) $\frac{1}{2}$	(D) $\frac{1}{\sqrt{2}}$	$(c) - \frac{1}{2}$	(d) 1.49
Question 13)	$\sqrt{2\frac{1}{4}} = ?$			
	(a) $2\frac{1}{2}$	(b) $1\frac{1}{2}$	(c) $1\frac{1}{4}$	(d) none of these
Question 14)	Which of the following is	the square of an even num	ber?	
,	(a) 196	(b) 441	(c) 625	(d) 529
Question 15)	Which of the following is	the square of an odd numb	per?	
	(a) 2116	(b) 3844	(c) 1369	(d) 2500
Question 16)	$\sqrt{72} \times \sqrt{98} = ?$			
	(a) 42	(b) 84	(c) 64	(d) 74
Question 17)	$\sqrt[3]{512} = ?$			
	(a) 6	(b) 7	(c) 8	(d) 9
Question 18)	$\sqrt[3]{125 \times 64} = ?$			
	(a) 100	(b) 40	(c) 20	(d) 30
	3 510			
Question 19)	$\sqrt{\frac{-512}{729}} = ?$			
	(a) $\frac{-7}{2}$	(b) $\frac{-8}{2}$	(c) $\frac{7}{2}$	(d) $\frac{8}{2}$
	, y	y y	, y	, y
Question 20)	$(0.8)^3 = ?$			
	(a) 51.2	(b) 5.12	(c) 0.512	(d) none of these
Question 21)	$\binom{1}{1}$ 3 $\binom{3}{2}$			
Question 21)	$\left(\prod_{i=1}^{n} \right)^{i} = i$			
			197	
	(a) $1 \frac{1}{1000}$	(b) $2\frac{1}{1000}$	(c) $2\frac{1}{1000}$	(d) none of these
Question 22)	By what least number sho	ould 648 be multiplied to ge	et a perfect cube?	
.	(a) 3	(b) 6	(c) 9	(d) 8
Question 23)	Which of the following nu	imbers is a perfect cube ?	() 001 (
Quarter of	(a) 1152	(D) 1331	(C) 2016	(d) /39
Question 24)	ву what least number sho	ouid 1536 be divided to get	a perfect cube ?	
Question 25)	(a) 3 Which of the following is:	(U) 4 a cube of an odd number 2	() 0	(u) ð
	(a) 216	(h) 512	(c) 343	(d) 1000
	(u) 2 10			

6 (vii) maths <u>Chapter – 11</u>

Question 1)	A symbol in algebra having	g a fixed value is called.		
	(a) Constant	(b) Algebric expression	(c) variable	(d) none of these
Question 2)	A symbol which can be giv	ven or assigned a varied nu	Imber of numerical values i	scalled
	(a) Term	(b) Variable	(c) Constant	(d) Coefficients
Question 3)	A combination of constant	ts and variables connected	by the basic mathematica	l operators I.e +, -, ×, ÷
	IS Called	(b) Like terme	(a) Liniika tarma	(d) Torma
Outstion 4	(a) Algebric expression	(D) LIKE LEITIS		(a) reim
Question 4)	(a) integers	(h) positivo intogors	(c) non nositivo intogors	(d) none of these
Ouestion 5	Which of the following is:	a hinomial?	(c) non-positive integers	(d) none of these
Question 5)	(a) $8 \times r \div r$	(b) $12a^2 + 7b + 5c$	(c) 5a x 7h x 8c	(d) $12(a^3+a)$
Question 6)	The various parts of an alc	rebric expression connecte	ed by + or - sign are called	
	(a) Expression	(b) Constants	(c) Term	(d) None of these
Question 7)	Multiply 3x by (2x + 5y)		(0) 10111	
,	(a) $6x^2 + 15xy$	(b) $6x^3 + 15xy^2$	(c) $6x + 15x^2y^2$	(d) none of these
Question 8)	Subtract 6a – 4b from 5a -	+ 8b we get		
	(a) –a + 12b	(b) –a -12b	(c) a + 12b	(d) none of these
Question 9)	The sum of a+b+ab, -b+c-l	bc and –c-a+ac is		
	(a) 2c + ab – bc + ac	(b) ab – bc – ac	(c) ab – bc + ac	(d) $2a + 2b - 2c + ab - ac - bc$
Question 10)	Rule $(+ x) \times (- y)$ becomes.			
	(a) + xy	(b) – xy	(c) xy	(d) none of these
Question 11)	Terms having same literal	factors are called		
a	(a) Coefficient	(b) like terms	(c) constantant	(d) none of these
Question 12)	5a - 3[3a - (4 - 7a)] + 4(a-3) on simplification is ed	qual to	
Oursetien 12)	(a) -21 a (b) $(2x^2 - x^2)$ (b) $(2x - 1)$	(b) $21a + 12$	(c) -21a – 24	(d) -24
Question 13)	$(3X - 4) (ZX^2 - 5X + 1) - (ZX - 1)$	$(3x^2 + 7x - 5)$ equals.	(c) $24x^2 + 40x = 0$	(d) $12x^3 - 24x^2 + 40x + 0$
Outstion 14	(a) $12X^2 - 40X^2 + 34X - 1$ Divido $54x^4y^3z$ by $6x^2y^2z$	$(D) 54x^2 - 40x - 9$	$(C) = 34x^2 + 40x = 9$	(u) $12x^2 - 54x^2 + 40x + 9$
Question 14)	$(a) Q_{VV}^2$	(b) $- 9 v^2 v$	(c) $Q x^2 v^2$	(d) $- 9x^2y^2$
Question 15)	(a) = 5xy Simplify $(a+1)(a+2)(a+3)$	(b) = 77 y) then	(C) 7X Y	(u) – 7X y
Question 15)	(a) $a^3+6a^2+11a+6$	(b) $a^2 + 6a^3 - 11a + 8$	(c) $a^4 + 6a^2 - 11a - 6$	(d) None of these
Ouestion 16)	Which polynomial has the	e highest degree?		
,	(a) $5x^2 - 2x^8 + x^6$	(b) $-7x^2+20$	(c) 27x ¹⁰ +3x ⁵ -16	(d) -150x ³
Question 17)	By how much is a ⁴ -6a ² b ² +l	b^4 more than a^4 +4 a^2b^2 + b^4	?`́	
	(a) -2a ² b ²	(b) 2a ⁴ +b ⁴	(c) -10a ² b ²	(d) 2a ² b ²
Question 18)	What will be the missing t	erm?		
	$(-14y^2+9y^2-12y+3) + (2y^2+$	\Box -6y-2) = (-3y ² -15y+1)		
	(a) -6y	(b) 3y	(c) –3y	(d) 6y
0 1 10	772 52			
Question 19)	$-\frac{7x^{7}y^{3}}{x^{7}}$ $-\frac{56xy^{3}z^{2}}{9w^{2}z^{2}}$ equa	IS		
	$X' - 8Xy^2Z^2$	(h) 15v ³	$(c) u^3$	
Ouestion 20	(a) - 10y The sum or difference of r	(U) TOY monomials is called	(c) y	(d) 0
Question 20)	(a) polynomial	(h) Term	(c) Coefficient	(d) None
Ouestion 21)	The term having different	variable parts are called		
	(a) Constant and variables	(b) Terms	(c) Like terms	(d) Unlike terms
Question 22)	The sum of the exponents	s of the variables is :	(-)	(1)
	(a) Degree	(b) exponents	(c) variables	(d) None
Question 23)	x ⁰ +y ⁰ +3 equals			
	(a) 1	(b) 2	(c) 3	(d) 5
Question 24)	Which is the correct one			
	(a) Dividend = Reminder ×	: Q + Div (b) Divis	sor = Dividend \times Q + R	
	(c) Dividend = $Q \times D + R$	(d) Non	e of these	
Question 25)	When 2x ² -11x+12 divided	by x-4 then reminder is		
	(a) 1	(b) 2	(C) U	(d) 4
			•	
		<u> Chapter – 1</u>	<u> </u>	

Question 1)	A mathematical stater	nent that two expressions	are equal called	
	(a) Statement	(b) equation	(c) expression	(d) none of these
Question 2)	If $5x \frac{-3}{4} = 2x \frac{-2}{3}$, then 2	x = ?		
	(a) $\frac{1}{12}$	(b) $\frac{1}{4}$	(c) 36	(d) $\frac{1}{36}$
Question 3)	If (2n+5) = 3 (3n - 10),	then n = ?		
	(a) 5	(b) 3	(c) $\frac{2}{5}$	(d) $\frac{2}{3}$
Question 4)	If $\frac{x-1}{x+1} = \frac{7}{9}$ then x = ?		U U	J.
	(a) 6	(b) 7	(c) 8	(d) 10
Question 5)	ion 1)A mathematical statement that two expressions are equal called (a) Statement (b) equation(c) expression(d) none of theion 2)If $5x \frac{-3}{4} = 2x \frac{-2}{3}$, then $x = ?$ (a) $\frac{1}{12}$ (b) $\frac{1}{4}$ (c) 36(d) $\frac{1}{36}$ ion 3)If $(2n+5) = 3$ (3n - 10), then $n = ?$ (a) 5 (b) 3(c) $\frac{2}{5}$ (c) $\frac{2}{5}$ (d) $\frac{2}{3}$ ion 4)If $\frac{x-1}{x+1} = \frac{7}{9}$ then $x = ?$ (a) 6 (b) 7(c) 8 (d) 10(d) 10ion 5)The sum of two consecutive whole numbers is 53. The smaller number is (a) 25 (b) 26(c) 29 (d) 23			
	(a) 25	(b) 26	(c) 29	(d) 23

		7 (vii) maths	5	
Question 6)	A number when multiplie	d by 5 is increased by 80. T	he number is	
	(a) 15	(b) 20	(c) 25	(d) 30
Question 7)	An value of the variable v	which makes the equation a	true statement is called	
	(a) expression	(b) solution	(c) variable	(d) None
Question 8)	Transposing a term mean	s changing its sign and taki	ng it to other side of :	
	(a) statement	(b) constant	(c) Equation	(d) None
Question 9)	If 8(2x-5)-6(3x-7)=1, then	X=?		
	(a) 2	(b) 3	(C) $\frac{1}{2}$	(d) $\frac{1}{3}$
Question 10)	If $\frac{x}{x} - 1 = \frac{x}{x} + 4$ then $x = ?$)	2	5
	(a) 8	(b) 16	(c) 24	(d) 30
Ouestion 11)	$\frac{2}{2}$ of a number is less that	n the original number by 10). The original number is.	
,	3 (a) 30	(h) 36	(c) 45	(d) 60
Question 12)	Thrice a number when in	creased by 6 gives 24. The r	number is	(u) 00
	(a) 6	(b) 7	(c) 8	(d) 11
Question 13)	The sum of two consecut	ive odd number is 36. The s	smaller one is	(4)
,	(a) 15	(b) 17	(c) 19	(d) 13
Question 14)	The ages of A and B are in	the ratio 5:3, After 6 years	s, their ages will be in the ra	atio 7:5. The present
	Age of A is	-	-	
	(a) 5 years	(b) 10 years	(c) 15 years	(d) 20 years
Question 15)	The length of a rectangle	is three times its width and	l its perimeter is 96m. The	length is.
	(a) 12m	(b) 24m	(c) 36m	(d) 48m
Question 16)	On adding 9 to the twice	of a whole number gives 3 ⁻	1. The whole number is.	
	(a) 21	(b) 16	(c) 17	(d) 11
Question 17)	If $\frac{2x-1}{2} = \frac{x-2}{2} + 1$ then x =	= ?		
	(a) 2	(b) 4	(c) 6	(d) 8
Question 18)	The sum of two consecut	ive even numbers is 86. The	e larger of the two is	
	(a) 46	(b) 36	(c) 38	(d) 44
Question 19)	Two complementary angl	es differ by 10°. The larger	angle is.	
	(a) 60 ⁰	(b) 50 ⁰	(c) 64 ⁰	(d) 54 ⁰
Question 20)	Solve $5x - 6 = 4x - 2$ then	X = ?		
	(a) 2	(b) 3	(c) 4	(d) 0
Question 21)	An equation involving onl	y a linear polynomial is call	ed.	
0 11 00)	(a) linear equation	(b) quadratic equation	(c) polynomial	(d) none of these
Question 22)	When any term of an equ	lation may be taken from o	ne side to the other with a	change its.
Question 22)	(a) Value $f_{7x} = 2 + 10x$ then y	(b) sign	(c) statement	(a) none of these
Question 23)	$\frac{11}{X} - 2 = 21 + 10X \text{ (nen X)}$	(b) on integer	(a) rational number	(d) none of these
Outstien 24)	(d) II detion $2x-3$	3x-5 3		
Question 24)	The value of x in $\frac{-4}{4}$	$\frac{1}{2} = X + \frac{1}{4}$ IS	4	4
	(a) $\frac{-1}{3}$	(b) 1	(C) $\frac{1}{4}$	(d) $\frac{1}{2}$
Question 25)	If $\frac{4\bar{m}-3}{\bar{m}} = 3$ what is the va	lue of 7m – 5?	-	-
	(a) 6	(b) 10.5	(c) 37	(d) 68.5

<u> Chapter – 13</u>

Question 1)	If a is greater than b whic	h is correct		
	(a) a < b	(b) a > b	(c) a = b	(d) a ≠ b
Question 2)	A number satisfies an ine	quality, if it makes that ine	quality	
·	(a) False	(b) Incorrect	(c) True	(d) none of these
Question 3)	On multiplying both sides	by the same negative num	ber it becomes.	
	(a) Changed	(b) reversed	(c) Un changes	(d) None of these
Question 4)	The set of elements from	which the replacement of	the is taken is c	alled replacement Set.
	(a) Variables	(b) Constants	(c) operators	(d) numbers
Question 5)	We should not	both sides of an inequality	by a negative number unle	ess it is desired to
	reverse the inequality.			
	(a) multiply	(b) divide	(c) multiply or divide	(d) none of these
Question 6)	The set of all possible value	ues of 'x' which satisfy a giv	en in equation is called	
	(a) solution set	(b) replacement set	(c) reverse set	(d) none of these
Question 7)	If $3x + 2 \ge 14$ then x is			
	(a) x < 4	(b) x > 4	(c) $x \ge 4$	(d) none of these
Question 8)	On changing sides the	of the inequality	is	
	(a) reverse	(b) changed	(c) unchange	(d) none of these
Question 9)	Solve $3x + 7 < 10$ the x is			
	(a) x < 1	(b) x ≤ 1	(c) x ≥ 2	(d) none of these
Question 10)	Solve $x + 3 > 8$ where $x \notin x$	w then		
	(a) x = 1,2,3	(b) x = 6,7,8	(c) x = 0	(d) none of these
Question 11)	What inequality is shown	on the graph below?		
		 		
	(a) 2x > 6	(b) 2x > - 6	(c) 2x ≥ 6	(d) 2x ≥ - 6
Question 12)	Which is the solution to 4	x – 6 < 10 ?		. ,
	(a) x > 1	(b) x < 1	(c) x > 4	(d) x < 4

Question 13)	Which is the solution to 5	8 (vii) maths + 2x > 7 ?	5	
	(a) < + + + + + + + + + + + + + + + + + + 	$ \xrightarrow[6 \ 8 \ 10 \ $ (b) $ \leftarrow $	-10 -8 -6 -4 -2 2 4 6 8 1	<u> </u>
	(C) $<$ 1 + + + + + + + + + + + + + + + + + +	$\begin{array}{c c} & & & \\ \hline \\ \hline$		→
Question 14)	Which is the solution to $\frac{x}{3}$	$-\frac{1}{6} > \frac{5}{6}$?	$(c) \times 3$	(d) x > 6
Question 15)	Which inequality is true (a) 4 (6)>26	(b) 6+11<14	(c) 10-6<5	(d) 6+(-1)>5
Question 16)	Solve $a + 3 \ge 2$ (a) $a \le -1$	(b) a ≥ - 1	(c) a ≥ 1	(d) a ≥ 5
Question17)	Solve $a = 6 \ge -1$	(b) $a > -5$	(c) $a < -5$	(d) $a > 5$
Question 18)	Which is the solution to –	$3 \le \frac{x}{3}$?		
Question 19)	(a) x ≤ - 9 Solve – 8x > 48	(b) x ≥ - 9	(c) x ≤ - 1	(d) x ≥ - 1
Question 20)	(a) x > - 6 Which is the solution to $\frac{a}{a}$	(b) $x < -6$ + $\frac{2}{5} \le \frac{9}{10}$?	(c) x < 6	(d) x > 8
Question 21)	(a) $a \le 1$ Which inequality is true?	(b) $a \le 2$	(c) a ≤ 5	(d) a ≤ 10
Ouestion 2^{1}	(a) 5 (-2) > 10 Solve - 1 < a - 3	(b) 11 + (-3) < 9	(c) 3 (13) < 39	(d) 5 + 12 > 18
	(a) a > - 4	(b) a > - 2	(c) $a > \frac{1}{3}$	(d) a > 2
Question 23)	Solve a – 6 ≥ - 6 (a) a ≤ - 12	(b) a ≥ - 6	(c) a ≥ 0	(d) a ≥ 1
Question 24)	Which is the solution to – (a) $x \ge -3$	$2 \le \frac{-2x}{3}$ (b) $x \le -3$	(c) x ≥ - 9	(d) x ≤ - 9
Question 25)	Solve – 10x < - 100 (a) x > 10	(b) x < 10	(c) x > -10	(d) – x > - 10
		<u>Chapter – 1</u>	<u>4</u>	
Question 1)	A indicates an	exact location in space		
Ouestion 2)	(a) point A straight path that exten	(b) line ds endlessly in both directi	(c) Angle	(d) None of these
$\Omega_{\text{uostion 2}}$	(a) plane	(b) point	(c) line	(d) Ray
Question 4)	(a) Line	(b) point a definite length	(c) plane	(d) None of these
Question 4)	(a) Point	(b) line segment	(c) Line	(d) None of these
Question 5)	(a) Ray	(b) Line	(c) Line segment	(d) None of these
Question 6)	An angle is 40° less than the (a) 125° and 55°	hree times its supplement. (b) 45° and 135°	(c) 110^{0} and 70^{0}	(d) 120 ⁰ and 60 ⁰
Question /)	(a) 32 ⁰	(b) 48 ⁰	(c) 60 ⁰	(d) 20 ⁰
Question 8)	Two complementary angle (a) 40 and 50°	es are in the ratio 4:5. Find (b) 60º and 30º	the angles. (c) 45° and 45°	(d) none of these
Question 9)	Three or more points whic (a) Ray	ch lie on the same line are (b) line	called (c) collinear	(d) none of these
Question 10)	Three or more lines in a p (a) Point	lane, if all of them pass thr (b) Concurrent	ough the same point are ca (c) Collinear	lled. (d) None of these
Question 11)	The sum of the angles rou (a) 180°	nd a point is (b) 360 ⁰	(c) 540 ⁰	(d) 720 ⁰
Question 12)	An inclination between tw (a) Angle	vo rays with the same initia (b) Arm	al point is called (c) Ray	(d) None of these
Question 13)	Vertically opposite angles (a) different	are always. (b) equal	(c) both a and b	(d) None of these
Question 14)	The sum of the angles at a (a) 180°	a point on one side of a stra (b) 540°	aight line is (c) 360º	(d) 0 ⁰
Question 15)	Find the supplement of 12 (a) 56°	24 ⁰ (b) 36 ⁰	(c) 26 ⁰	(d) 46 ⁰
Question 16)	An angle whose magnitud (a) acute	le is more than 0° but less t (b) obtuse	than 90° is called. (c) Straight	(d) None of these
Question 17)	In the given figure lines Al	3 and CD intersect at 0. If 2 (b) 140°	$-A0D = 40^{\circ}$, find $\angle B0C$	(d) None of these
			(0) 00	
		c ←	→D	

∖∎

		9 (vii) math	ns 💦	1
Question 18)	In the given figure, find x		N (x+41)° / M
	(a) 60°	(b) 40 ⁰	\backslash	
	(c) 70 ⁰	(d) 30 ⁰		
			(x+30)°	(x-11) [°] D
			x O	y
Question 19)	Find the complement of 3	5°32'		
	(a) 54º28'	(b) 64º27'	(c) 44º28 ⁱ	(d) 64º25'
Question 20)	1 complete rotation equa	S		
	(a) 720 ⁰	(b) 360 ⁰	(c) 180 ⁰	(d) None of these
Question 21)	An angle whose magnitud	le lies between 180° and 3	360 ⁰ is called	
	(a) reflex	(b) complete	(c) Acute	(d) None of these
Question 22)	The angles formed by two	intersecting lines having	no common arm are called.	
	(a) vertically opposite	(b) Adjacent	(c) Straight	(d) Supplementary
Question 23)	A line that divides an angl	e into two equal angles is	called the	
	(a) bisector	(b) transversal	(c) perpendicular	(d) None of these
Question 24)	If $(4x + 28)^0$ and $(x - 8)^0$ are	e supplementary angles th	hen find 'x'.	
	(a) 32 ⁰	(b) 64 ⁰	(c) 96 ⁰	(d) 70 ⁰
Question 25)	Adjacent angles whose tw	o non- common arms are	e opposite rays (lie on the sa	me straight line) called
	(a) vertically opposite	(b) linear pair	(c) Adjacent	(d) None of these
		Chanter - 1	15	
			<u>13</u>	
Question 1)	A line that intersects two	coplanar lines at two diffe	erent points are called	
	(a) parallel lines	(b) transversal	(c) coplaner	(d) None of these
Question 2)	Those lines in the same pl	ane that never intersect a	are called	
	(a) coplaner	(b) parallel	(c) transversal	(d) straight
Question 3)	Angles lie on the same sid	e of the transversal and o	on the same sides of the line	S
	(a) Alternate interior	(b) Corresponding	(c) Co interior	(d) None of these
Question 4)	The perpendicular distance	e between two parallel lir	nes remains	
	(a) Different	(b) Constant	(c) Changed	(d) None of these
Question 5)	The angle lie on opposite	sides of the transversal, o	outside the lines	
	(a) Alternate exterior	(b) Alternate interior	(c) Adjacent	(d) Vertically opposite
Question 6)	Name the type of angles w	vhich shown in fig		•
	(a) Corresponding	(b) Alternate exterior	P	
	(c) Adjacent	(d) None of these	<u> </u>	
			<i>[</i>	
		4		
Question 7)	If two parallel lines are cu	t by a transversal then the	e angle pairs formed are	
	(a) equal or supplementar	ry (b) different	(c) complementary	(d) None of these
Question 8)	The sum of co interior and	les are		
	(a) 90 ⁰	(b) 180 ⁰	(c) None of these	(d) 360 ⁰
Ouestion 9	In the figure PO II RS find	Y P	Q	
	(a) 138 ⁰	(h) 66 ⁰		
	(a) 130	(d) 10°		
	(c) 70	(u) 40 12 x	N	*
			108°	\setminus
Outstion 10	Ling 1/1m which of the fe	T Ilowing pairs of angles are	s congruent?	
	$(a) \neq 1$ and (A)	(b) / 2 and / 4		$1 \sqrt{2} \qquad 3 \sqrt{4}$
	(a) $\angle 1$ and $\angle 4$	$(d) \angle 5 and \angle 4$	•	5 6 7 8
	$(c) = 4 \operatorname{and} = 0$			
Ouestion 11	In the given figure, the arr	ns of two angles are para	IIel if $\angle ABC = 70^{\circ}$ then find	'ali >atm. V
Question my	(a) 70°	(h) 110 ⁰		
	(a) 70°	(d) none of these		
	(c) 50	(d) none of these		
Outstion 12	If $1 - 5x = 1/0$ and $2 - 3x$	10 ⁰ are vertically ennesit	to angles then the value of "	$B \xrightarrow{g} C$
Question 12)	$11 \ge 1-3x^{-14}$ and $\ge 3-3x^{-14}$	(b) 24°	(c) $A8^0$	$(d) 96^0$
Ouestion 13	Corresponding angles are	(b) 24 2	(0) 40	
Question 15)	(a) oqual	: (h) 100 ⁰	(c) different	(d) Nono of those
	(a) equal	(b) 160°	(c) different	(d) Note of these
Outstion 14	In the given figure which	ono is altornato intorior ar	nalos	1
	(a) (2 and (6 (4 and		$\frac{1}{2} \frac{1}{2} \frac{1}$	1/2
	(a) \angle 5 and \angle 0, \angle 4 and (20 (b) 20 76 (d) 1	Nono of those	4 3
		(u) I		4
		Α	←	
0	half a selle		L#	/
Question 15)	in the given figure, AB II C	L. FING 'X'	\setminus /	4
	(a) 80°	(D) /0°	\setminus /	
	(c) 30°	(d) 40 /	\backslash	
		в́30°	Ŵ	
			C	
			-	

	10 (vii) maths	-
Question 16)	In the given figure AB II CD and BC II DE. What type of angles are x and y (a) Corresponding (c) alternate (d) None of these	B
	c/	y Y
Question 17)	If L II m, then value of 'x' is (a) 115° (b) 295° (c) 195° (d) 235°	
	(c) $1/5$ (c) 255 (c) 55° (c) c c c) •
Question 18)	In the given figure find 'x' if AB II CD (a) 60° (b) 70°	
	(c) 50° (d) None	
Question 19)	What type of angles are shown in figure (a) Alternate interior (b) Corresponding	
	(c) vertically opposite (d) None of these	
Question 20)	If $\angle A = (5x-10)^{\circ}$ and $\angle B = (8x - 5)^{\circ}$ are cointerior angles the find 'x' (a) 20° (b) 15° (c) 25° (d) 10°	
Question 21)	For two parallel lines and a transversal, $\angle 1=85^{\circ}$, for which pair of angles measures is sum lea (a) $\angle 1$ and a corresponding angle (b) $\angle 1$ and same side interior angle (c) $\angle 1$ and its supplement (d) $\angle 1$ and its complement	st?
Question 22)	In the given figure, L II m Explain, why $\frac{x}{y} = 1$ because	
	(a) Vertically opposite (b) Adjacent (c) Alternate interior (d) None of these	
Question 23)	In the given figure, find 'x' if L II m (a) 75° (b) 105° (c) 180° (d) 135° (d) 135°	
Question 24)	The same side interior angles are	
	(a) equal (b) Complementary (c) Supplementary (d) none of th	iese
Question 25)	Alternate interior angles are (a) equal (b) not equal (c) supplementary (d) none of the	nese
		1030